
Natural SQL Statements - Overview
This section covers points you have to consider when using Natural SQL statements with DB2. These DB2-specific
points partly consist in syntax enhancements which belong to the Extended Set of Natural SQL syntax. The Extended
Set is provided in addition to the Common Set to support database-specific features.

This section covers the following topics:

Common Syntactical Items

CALLDBPROC

COMMIT

DELETE

INSERT

PROCESS SQL

READ RESULT SET

ROLLBACK

SELECT
(cursor-oriented)

SELECT SINGLE
(non-cursor-oriented)

UPDATE

User-defined Functions

Common Syntactical Items
The following syntactical items are either DB2-specific and do not conform to the standard SQL syntax definitions
(that is, to the Common Set of Natural SQL syntax) or impose restrictions when used with DB2 (see also SQL
Statements in the Natural Statements documentation).

atom

An atom can be either a parameter (that is, a Natural program variable or host variable) or a constant. When running
dynamically, however, the use of host variables is restricted by DB2. For further details, refer to the relevant
literature on DB2 by IBM.

comparison

The following three comparison operators are specific to DB2 and belong to the Natural Extended Set.

 ¬ =
 ¬ >
 ¬ <

1Copyright Software AG 2002

Table of ContentsNatural SQL Statements - Overview

factor

The following three factors are specific to DB2 and belong to the Natural Extended Set:

special-register
scalar-function (scalar-expression, ...)
scalar-expression unit
case-expression

scalar-function (???)

A scalar function (ohne Bindestrich, lt. IBM???) is a built-in function that can be used in the construction of scalar
computational expressions. Scalar functions are specific to DB2 and belong to the Natural Extended Set.

The scalar functions NDB supports are listed below in alphabetical order:

Copyright Software AG 20022

Natural SQL Statements - Overviewfactor

A - H I - R S - Z

ABS
ABSVAL
ACOS
ADD_MONTHS
ASIN
ATAN
ATAN2
ATANH
BLOB
CCSID_ENCODING
CEIL
CEILING
CHAR
CLOB
COALESCE
CONCAT
COS
COSH
DATE
DAY
DAYOFMONTH
DAYOFWEEK
DAYOFWEEK_ISO
DAYOFYEAR
DAYS
DBCLOB
DEC
DECIMAL
DEGREES
DIGITS
DOUBLE
DOUBLE-PRECISION
(Bindestrich???)
EXP
FLOAT
FLOOR
GRAPHIC
HEX
HOUR

IDENTITY_VAL_LOCAL
IFNULL
INSERT
INTEGER
JULIAN_DAY
LAST_DAY
LCASE
LEFT
LENGTH
LN
LOCATE
LOG
LOG10
LOWER
LTRIM
MAX
MICROSECOND
MIDNIGHT_SECONDS
MIN
MINUTE
MOD
MONTH
MULTIPLY_ALT
NEXT_DAY
NULLIF
POSSTR
POWER
QUARTER
RADIANS
RAISE_ERROR
RAND
REAL
REPEAT
REPLACE
RIGHT
ROUND
ROUND_TIMESTAMP
ROWID
RTRIM

SECOND
SIGN
SIN
SINH
SMALLINT
SPACE
SQRT
STRIP
SUBSTR
TAN
TANH
TIME
TIMESTAMP
TIMESTAMP_FORMAT
TO_CHAR
TO_DATE
TRANSLATE
TRUNC
TRUNC_TIMESTAMP
TRUNCATE
UCASE
UPPER
VALUE
VARCHAR
VARCHAR_FORMAT
VARGRAPHIC
WEEK
WEEK_ISO
YEAR

Each scalar function is followed by one or more scalar expressions in parentheses. The number of scalar expressions
depends upon the scalar function. Multiple scalar expressions must be separated from one another by commas.

Example:

SELECT NAME
 INTO NAME
 FROM SQL-PERSONNEL
 WHERE SUBSTR (NAME, 1, 3) = ’Fri’
 ...

3Copyright Software AG 2002

scalar-function (???)Natural SQL Statements - Overview

column function (klein???mit Bindestrich erforderlich???)

The following column functions do not conform to standard SQL. They are specific to DB2 and belong to the
Natural Extended Set. Column functions operate on a set of values that derive from an expression (???) and return
the defined value (???) or the NULL value.

AVG
COUNT
COUNT_BIG
MAX
MIN
STDDEV
STDDEV_POP
STDDEV_SAMP
SUM
VAR
VAR_POP
VAR_SAMP
VARIANCE
VARIANCE_SAMP

scalar-operator

The concatenation operator (CONCAT or "||") does not conform to standard SQL. It is specific to DB2 and belongs
to the Natural Extended Set.

special-register

The following special registers do not conform to standard SQL. They are specific to DB2 and belong to the Natural
Extended Set:

CURRENT APPLICATION ENCODING SCHEME
CURRENT DATE
CURRENT_DATE (???)
CURRENT DEGREE
CURRENT FUNCTION PATH
CURRENT_LC_CTYPE (???)
CURRENT LC_CTYPE
CURRENT LOCALE LC_CTYPE
CURRENT OPTIMIZATION HINT
CURRENT PACKAGESET
CURRENT_PATH
CURRENT PRECISION
CURRENT RULES
CURRENT SQLID
CURRENT SERVER
CURRENT TIME
CURRENT_TIME (???)
CURRENT TIMESTAMP
CURRENT TIMEZONE
CURRENT_TIMEZONE (???)
USER

A reference to a special register returns a scalar value.

Copyright Software AG 20024

Natural SQL Statements - Overviewcolumn function (klein???mit Bindestrich erforderlich???)

Using the command SET CURRENT SQLID, the creator name of a table can be substituted by the current SQLID.
This enables you to access identical tables with the same table name but with different creator names.

units

Units, also called durations, are specific to DB2 and belong to the Natural Extended Set.

The following units are supported:

DAY
DAYS
HOUR
HOURS
MICROSECOND
MICROSECONDS
MINUTE
MINUTES
MONTH
MONTHS
SECOND
SECONDS
YEAR
YEARS

case-expression

CASE
searched-when-clause ...
simple-when-clause

ELSE
NULL
scalar expression

END

Case-expressions do not conform to standard SQL and are therefore supported by the Natural SQL Extended Set
only.

Example:

 DEFINE DATA LOCAL
 01 #EMP
 02 #EMPNO (A10)
 02 #FIRSTNME (A15)
 02 #MIDINIT (A5)
 02 #LASTNAME (A15)
 02 #EDLEVEL (A13)
 02 #INCOME (P7)
 END-DEFINE
 SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
 (CASE WHEN EDLEVEL < 15 THEN ’SECONDARY’
 WHEN EDLEVEL < 19 THEN ’COLLEGE’
 ELSE ’POST GRADUATE’
 END) AS EDUCATION, SALARY + COMM AS INCOME
 INTO
 #EMPNO, #FIRSTNME, #MIDINIT, #LASTNAME,
 #EDLEVEL, #INCOME
 FROM DSN8510-EMP
 WHERE (CASE WHEN SALARY = 0 THEN NULL
 ELSE SALARY / COMM

5Copyright Software AG 2002

unitsNatural SQL Statements - Overview

 END) > 0.25
 DISPLAY #EMP
 END-SELECT
 END

CALLDBPROC
Futher details and syntax:
CALLDBPROC in Natural SQL Statements in the Natural Statements documentation.

The CALLDBPROC statement allows you to call DB2 stored procedures. It supports the result set mechanism of
DB2 Version 5 (???) and it enables you to call DB2 stored procedures written in Natural. (???)

If the CALLDBPROC statement is executed dynamically, all parameters and constants are mapped to the variables
of the following DB2 SQL statement:

CALL :hv USING DESCRIPTOR :sqlda statement

:hv denotes a host variable containing the name of the procedure to be called and :sqlda is a dynamically generated
sqlda describing the parameters to be passed to the Natural (???) stored procedure.

If the CALLDBPROC statement is executed statically, the constants of the CALLDBPROC statement are also
generated as constants in the generated assembler SQL source for the DB2 precompiler.

If the SQLCODE created by the CALL statement indicates that there are result sets (SQLCODE +466 and +464),
Natural for DB2 runtime executes a

DESCRIBE PROCEDURE :hv INTO :sqlda

statement in order to retrieve the result set locator values of the result sets created by the invoked Natural (???) stored
procedure. These values are put into the RESULT SETS variables specified in the CALLDBPROC statement. Each
RESULT SETS variable specified in a CALLDBPROC for which no result set locator value is present is reset to
zero. The result set locator values can be used to read the result sets by means of the READ RESULT SET statement
as long as the database transaction which created the result set has not yet issued a COMMIT or ROLLBACK.

If the result set was created by a cursor WITH HOLD, the result set locator value remains valid after a COMMIT
operation.

Unlike other Natural SQL statements, CALLDBPROC enables you (optionally!) to specify a SQLCODE variable
following the GIVING keyword which will contain the SQLCODE of the underlying CALL statement. If GIVING is
specified, it is up to the Natural program to react on the SQLCODE (error message NAT3700 is not issued by the
runtime).

Parameter data types supported by the CALLDBPROC statement:

Copyright Software AG 20026

Natural SQL Statements - OverviewCALLDBPROC

Natural Format/Length DB2 Data Type

An CHAR(n)

B2 SMALLINT

B4 INT

Bn
(n = not equal 2 or 4) (???)

CHAR(n)

F4 REAL

F8 DOUBLE PRECISION

I2 SMALLINT

I4 INT

Nnn.m NUMERIC(nn+m,m)

Pnn.m NUMERIC(nn+m,n)

Gn GRAPHIC(n)

An/1:m VARCHAR(n*m)

D DATE

T TIME
(see also TIME below)

TIME

The format of the Natural parameter (???) T has a wider range (???) than the DB2 TIME data type (fomat???).

As a result, converting the T value into the TIME value, the date (???) fraction and the tenths of a second part of the
relevant T field appear truncated in the equivalent (???) TIME field. Converting TIME into T, the date fraction (???)
is reset to 0000-01-02 (???) and the tenths of a second part is reset to 0 in Natural.

CALLMODE=NATURAL

This parameter allows DB2 stored procedures written in Natural (???) to be invoked. Natural (???) stored procedures
are Natural subprograms which execute in the DB2 (???) stored procedure address space.

If the CALLMODE=NATURAL parameter is specified, an additional parameter describing the parameters passed to
the Natural stored procedure is passed from the client, i.e. caller, to the server, i.e. DB2 (???) stored procedure. The
parameter is of format VARCHAR from the viewpoint of DB2. Therefore, every Natural (???) stored procedure has
to be defined in the SYSIBM.SYSPROCEDURES table (only applies to DB2 for OS/390 Version 5 and below) or
with the CREATE PROCEDURE statement (DB2 UDB for OS/390 Version 6 and above) by using this VARCHAR
parameter as the first in its PARMLIST row.

From the viewpoint of the caller, i.e. the Natural program, and from the viewpoint of the stored procedure, i.e.
Natural subprogram, this additional parameter is invisible. It is passed as first parameter by the Natural for DB2
runtime and it is used as on the server side to build the copy of the passed data in the Natural thread and the
corresponding CALLNAT statement. Additionally, this parameter serves as a container for error information created
during execution of the Natural stored procedure by the Natural runtime. It also contains information on the library
where you are logged on and the Natural subprogram to be invoked.

The following table describes the first parameter passed between the caller and the stored procedure if CALLMODE
= NATURAL is specified.

7Copyright Software AG 2002

CALLMODE=NATURALNatural SQL Statements - Overview

NAME FORMAT PROCESSING MODE SERVER

STCBL I2 Input (size of following information)

Procedure Information

STCBLENG A4 Input (printable STCBL)

STCBID A4 Input (’STCB’)

STCBVERS A4 Input (version of STCB ’310 ’)

STCBUSER A8 Input (user ID)

STCBLIB A8 Input (library)

STCBPROG A8 Input (calling program)

STCBPSW A8 Unused (password)

STCBSTNR A4 Input (CALLDBPROC statement number)

STCBTCP A8 Input (procedure called)

STCBPANR A4 Input (number of parameters)

Error Information

STCBERNR A5 Output (Natural error number)

STCBSTAT A1 Unused (Natural error status)

STCBLIB A8 Unused (Natural error library)

STCBPRG A8 Unused (Natural error program)

STCBLVL A1 Unused (Natural error level)

STCBOTP A1 Unused (error object type)

STCBEDYL A2 Output (error text length)

STCBEDYT A88 Output (error text)

 A100 Reserved for future use

Parameter Information

FORMAT_DESCRIPTION A variable Input

The FORMAT_DESCRIPTION contains a description for each parameter passed to the stored procedure consisting
of parameter type, format specification and length. Parameter type is the AD attribute of the CALLNAT statement as
described in the Natural Statements documentation.

Each parameter has the following format description element in the FORMAT_DESC string

atl,p[,d1]....

where

a is an attribute mark which specifies the parameter type:

Copyright Software AG 20028

Natural SQL Statements - OverviewCALLMODE=NATURAL

Mark Type Equivalent
AD Attribute

Equivalent
DB2 Clause

M modifiable AD=M INOUT

O non-modifiable AD=O IN

A input only AD=A OUT

t is one of the following Natural format tokens:

t Description l p dl Example

A Alphanumeric 1-253 0 1-32767
or
-

A30,0
or
A30,0,10

N Numeric unpacked 1-29 0-7 - N10,3

P Packed numeric 1-29 0-7 - P13,4

I Integer 2 or 4 0 - I2,0

F Floating point 0 - I4,0

B Binary 0 - B23,0

D Date 6 0 - D6

T Time 12 0 - T12

L Logical (unsupported)

 l is an integer denoting the length/scale of the field. For numeric and packed numeric fields, l denotes the total
number of digits of the field that is, the sum of the digits left and right of the decimal point. The Natural format
N7.3 is, for example, represented by N10.3. See also the table above.
p is an integer denoting the precision of the field. It is usually 0, except for numeric and packed fields where it
denotes the number of digits right of the decimal point. See also the table above.
d1 is also an integer denoting the occurrences of the alphanumeric array (alphanumeric only). See also the table
above.

This descriptive/control parameter is invisible to the calling Natural program and to the called Natural stored
procedure, but it has to be defined in the parameter definition of the stored procedure row in the
SYSIBM.SYSPROCEDURES table (only applies to DB2 for OS/390 Version 5 and below) or with the CREATE
PROCEDURE statement (DB2 UDB for OS/390 Version 6 and above) and the DB2 (???) PARAMETER STYLE
GENERAL or GENERAL WITH NULL. (???)

The following table shows the number of parameters which have to be defined in the SYSIBM.SYSPROCEDURES
table (only applies to DB2 for OS/390 Version 5 and below) or with the CREATE PROCEDURE statement (DB2
UDB for OS/390 Version 6 and above) depending on the number of user parameters and whether the client (i.e. the
caller of a stored procedure for DB2 for OS/390) and the server (i.e. the stored procedure for DB2 for OS/390) is
written in Natural or in another standard programming host (???) language. n (???) denotes the number of ’user’
(???) parameters.

9Copyright Software AG 2002

CALLMODE=NATURALNatural SQL Statements - Overview

Client\Server Natural not Natural

Natural n + 1 n (CALLMODE=NONE)

n + 1 (CALLMODE=NATURAL)

non-Natural n + 1 N

Example issuing CALLDBPROC and READ RESULT SET statements:

 DEFINE DATA LOCAL
 1 ALPHA (A8)
 1 NUMERIC (N7.3)
 1 PACKED (P9.4)
 1 VCHAR (A20/1:5) INIT <’DB25SGCP’>
 1 INTEGER2 (I2)
 1 INTEGER4 (I4)
 1 BINARY2 (B2)
 1 BINARY4 (B4)
 1 BINARY12 (B12)
 1 FLOAT4 (F4)
 1 FLOAT8 (F8)
 1 INDEX-ARRAY (I2/1:11)
 1 INDEX-ARRAY1(I2)
 1 INDEX-ARRAY2(I2)
 1 INDEX-ARRAY3(I2)
 1 INDEX-ARRAY4(I2)
 1 INDEX-ARRAY5(I2)
 1 INDEX-ARRAY6(I2)
 1 INDEX-ARRAY7(I2)
 1 INDEX-ARRAY8(I2)
 1 INDEX-ARRAY9(I2)
 1 INDEX-ARRAY10(I2)
 1 INDEX-ARRAY11(I2)
 1 #RESP (I4)
 1 #RS1 (I4) INIT <99>
 1 #RS2 (I4) INIT <99>
 LOCAL
 1 V1 VIEW OF SYSIBM-SYSTABLES
 2 NAME
 1 V2 VIEW OF SYSIBM-SYSPROCEDURES
 2 PROCEDURE
 2 RESULT_SETS
 1 V (I2) INIT <99>
 END-DEFINE
 CALLDBPROC ’DAEFDB25.SYSPROC.SNGSTPC’ DSN8510-EMP
 ALPHA INDICATOR :INDEX-ARRAY1
 NUMERIC INDICATOR :INDEX-ARRAY2
 PACKED INDICATOR :INDEX-ARRAY3
 VCHAR(*) INDICATOR :INDEX-ARRAY4
 INTEGER2 INDICATOR :INDEX-ARRAY5
 INTEGER4 INDICATOR :INDEX-ARRAY6
 BINARY2 INDICATOR :INDEX-ARRAY7
 BINARY4 INDICATOR :INDEX-ARRAY8
 BINARY12 INDICATOR :INDEX-ARRAY9
 FLOAT4 INDICATOR :INDEX-ARRAY10
 FLOAT8 INDICATOR :INDEX-ARRAY11
 RESULT SETS #RS1 #RS2
 CALLMODE=NATURAL

Copyright Software AG 200210

Natural SQL Statements - OverviewCALLMODE=NATURAL

 READ (10) RESULT SET #RS2 INTO VIEW V2 FROM SYSIBM-SYSTABLES
 WRITE ’PROC F RS :’ PROCEDURE 50T RESULT_SETS
 END-RESULT
 END

COMMIT
Futher details and syntax:
COMMIT in Natural SQL Statements in the Natural Statements documentation.

The SQL COMMIT statement indicates the end of a logical transaction and releases all DB2 data locked during the
transaction. All data modifications are made permanent.

COMMIT is a synonym for the Natural END TRANSACTION statement as described in the section Natural DML
Statements.

No transaction data can be provided with the COMMIT statement.

If this command is executed from a Natural (???) stored procedure, Natural for DB2 does not execute the underlying
commit operation. This allows the stored procedure to commit updates against non DB2 databases.

Under CICS, the COMMIT statement is translated into an EXEC CICS SYNCPOINT command. If the file server is
used, an implicit end-of-transaction is issued after each terminal I/O. This is due to CICS-specific transaction
processing in pseudo-conversational mode.

Under IMS/TM, the COMMIT statement is not translated into an IMS Checkpoint command, but is ignored. An
implicit end-of-transaction is issued after each terminal I/O. This is due to IMS/TM-specific transaction processing.

Unless when used in combination with the WITH HOLD clause, a COMMIT statement must not be placed within a
database loop, since all cursors are closed when a logical unit of work ends. Instead, it has to be placed outside such
a loop or after the outermost loop of nested loops.

If an external program written in another standard programming language is called from a Natural program, this
external program should not contain its own COMMIT command if the Natural program issues database calls, too.
The calling Natural program should issue the COMMIT statement on behalf of the external program.

DELETE
Futher details and syntax:
DELETE in Natural SQL Statements in the Natural Statements documentation.

Both the cursor-oriented or Positioned DELETE, and the non-cursor or Searched DELETE SQL statements are
supported as part of Natural SQL; the functionality of the Positioned DELETE statement corresponds to that of the
Natural DML DELETE statement.

With DB2, a table name in the FROM clause of a Searched DELETE statement can be assigned a correlation-name
(kursiv ???). This does not correspond to the standard SQL syntax definition and therefore belongs to the Natural
Extended Set.

The Searched DELETE statement must be used, for example, to delete a row from a self-referencing table, since
with self-referencing tables a Positioned DELETE is not allowed by DB2.

11Copyright Software AG 2002

COMMITNatural SQL Statements - Overview

INSERT
Futher details and syntax:
INSERT in Natural SQL Statements in the Natural Statements documentation.

The INSERT statement is used to add one or more new rows to a table.

Since the INSERT statement can contain a select expression, all the DB2-specific syntactical items described above
apply.

PROCESS SQL
Futher details and syntax:
PROCESS SQL in Natural SQL Statements in the Natural Statements documentation.

The PROCESS SQL statement is used to issue SQL statements to the underlying database. The statements are
specified in a statement-string, which can also include constants and parameters.

The set of statements which can be issued is also referred to as Flexible SQL and comprises those statements which
can be issued with the SQL statement "EXECUTE".

In addition, Flexible SQL includes the following DB2-specific statements:

CALL
CONNECT
SET APPLICATION ENCODING SCHEME
SET CONNECTION
SET CURRENT DEGREE
SET CURRENT LC_CTYPE
SET CURRENT OPTIMIZATION HINT
SET CURRENT PACKAGESET
SET CURRENT PATH
SET CURRENT PRECISION
SET CURRENT RULES
SET CURRENT SQLID
SET host-variable= special-register RELEASE

Note:
To avoid transaction synchronization problems between the Natural environment and DB2, the COMMIT and
ROLLBACK statements must not be used within PROCESS SQL.

CALL

Natural for DB2 now supports the DB2 Version 4 (???) CALL statement by means of the PROCESS SQL statement.
However, the syntax of the CALL statement is restricted as shown below.

CALL
procedure-name
host-variable

(
[:U:] host-variable
constant
NULL

 ,...

)

Copyright Software AG 200212

Natural SQL Statements - OverviewINSERT

The using descriptor parameter list format of the CALL statement is not supported.

Every host variable specified in the CALL parameter list should be prefixed with :U or the prefix should be omitted,
regardless how the parameters are defined in the Natural (???) stored procedures parameter list. To use :G as
host-variable prefix is strictly forbidden.

Example:

PROCESS SQL DB2-DDM

 <<CALL DB2PROC
 (:U:#USER,
 :U:#DATE,
 ’ALPHA’,
 NULL
)
 >>

DB2PROC is a procedure name to be defined as a stored procedure in DB2.

#USER, #DATE are Natural variables.

’ALPHA’ is a literal.

NULL is a keyword representing the NULL value.

Whether data are returned by the DB2 (???) stored procedure called is only determined by the definition of the call
parameter as defined for the stored procedure in DB2.

READ RESULT SET
Futher details and syntax:
READ RESULT SET in Natural SQL Statements in the Natural Statements documentation.

The READ RESULT SET statement reads a result set created by a Natural (???) stored procedure that was invoked
by a CALLDBPROC statement (see the relevant section).

For details on how to specify the scroll direction by using the variable scroll-hv, see the SELECT statement in the
section Natural SQL Statements.

ROLLBACK
Futher details and syntax:
ROLLBACK in Natural SQL Statements in the Natural Statements documentation.

The SQL ROLLBACK statement undoes all database modifications made since the beginning of the last logical
transaction. Logical transactions can start either after the beginning of a session or after the last COMMIT/END
TRANSACTION or ROLLBACK/BACKOUT TRANSACTION statement. All records held during the transaction
are released.

ROLLBACK is a synonym for the Natural statement BACKOUT TRANSACTION as described in the section
Natural DML Statements.

13Copyright Software AG 2002

READ RESULT SETNatural SQL Statements - Overview

If this command is executed from a Natural (???) stored procedure, Natural for DB2 executes the underlying rollback
operation. This sets the caller into a must-rollback state. If this command is executed from a

on behalf of the Natural error processing (implicit ROLLBACK), Natural for DB2 does not execute the underlying
rollback operation, thus allowing the caller to receive the original Natural error.

Under CICS, the ROLLBACK statement is translated into an EXEC CICS ROLLBACK command. However, if the
file server is used, only changes made to the database since the last terminal I/O are undone. This is due to
CICS-specific transaction processing in pseudo-conversational mode.

Under IMS/TM, the ROLLBACK statement is translated into an IMS Rollback (ROLB) command. However, only
changes made to the database since the last terminal I/O are undone. This is due to IMS/TM-specific transaction
processing.

As all cursors are closed when a logical unit of work ends, a ROLLBACK statement must not be placed within a
database loop; instead, it has to be placed outside such a loop or after the outermost loop of nested loops.

If an external program written in another standard programming language is called from a Natural program, this
external program should not contain its own ROLLBACK command if the Natural program issues database calls,
too. The calling Natural program should issue the ROLLBACK statement on behalf of the external program.

UPDATE
Futher details and syntax:
UPDATE in Natural SQL Statements in the Natural Statements documentation.

Both the cursor-oriented or Positioned UPDATE, and the non-cursor or Searched UPDATE SQL statements are
supported as part of Natural SQL. Both of them reference either a table or a Natural view.

With DB2, the name of a table or Natural view to be referenced by a Searched UPDATE can be assigned a
correlation-name. This does not correspond to the standard SQL syntax definition and therefore belongs to the
Natural Extended Set.

The Searched UPDATE statement must be used, for example, to update a primary key field, since DB2 does not
allow updating of columns of a primary key by using a Positioned UPDATE statement.

Note:
If you use the SET * notation, all fields of the referenced Natural view are added to the FOR UPDATE OF and SET
lists. Therefore, ensure that your view contains only fields which can be updated; otherwise, a negative SQLCODE is
returned by DB2.

Copyright Software AG 200214

Natural SQL Statements - OverviewUPDATE

	Natural SQL Statements - Overview
	Common Syntactical Items
	atom
	comparison
	factor
	scalar-function †???‡
	column function †klein???mit Bindestrich erforderlich???‡
	scalar-operator
	special-register
	units
	case-expression

	CALLDBPROC
	CALLMODE=NATURAL

	COMMIT
	DELETE
	INSERT
	PROCESS SQL
	CALL

	READ RESULT SET
	ROLLBACK
	UPDATE

